
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 7, pp. 644–654.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 7, pp. 61–75.

CONTROL IN SOCIAL ECONOMIC SYSTEMS

A Control Algorithm for Player’s Actions in a Triopoly Game

under Linear Demand and Cost Functions

M. I. Geraskin
Samara University, Samara, Russia

e-mail: innovation@ssau.ru

Received November 29, 2024

Revised March 21, 2025

Accepted March 25, 2025

Abstract—This paper considers a game of three oligopolistic firms (a triopoly) with the linear
demand and cost functions of players. The reflexive behavior of players is investigated through
a formalization with conjectural variations, i.e., players’ expectations regarding the impact of
their actions on the counterparty’s action. A method is developed to calculate the optimal
(consistent) sum of conjectural variations of a given player in terms of the utility functions of
the other players (environment). An algorithm is proposed to control the player’s actions by
the environment: implementing this algorithm forms a given mental type of the player and
predetermines the latter’s goal-oriented behavior. Computer simulations are carried out for a
hierarchical game in which the environment (the Principal) applies informational control to the
player’s actions, using the Russian telecommunications market as an example. According to
the simulation results, the control algorithm is effective and increases the environment’s utility.
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1. INTRODUCTION

The game-theoretic model of oligopoly as an economic sphere in which several firms sell an
identical product formalizes the interaction of these firms as players. As a rule, players are treated
as price takers: they face the equilibrium market price on the aggregate demand curve and perform
game actions (choose their strategies) in the form of supply quantities of the product. The key
feature of this game is that the equilibrium price depends on the actions of all players, so when
choosing a strategy, players must predict the actions of their counterparties (the environment). The
change in the environment’s action expected by a player in response to a unit change in the latter’s
action is called a conjectural variation. The player’s a priori unawareness regarding the conjectural
variations of the environment predetermines the fundamental complexity of the oligopoly game. As
is known from the classical models of A. Cournot [1] and H. Stackelberg [2], the optimal strategies of
players depend on two factors: the inverse demand function for the product and the cost functions
of the players. Therefore, the simpler form these functions have, the more complete and informative
the analysis of oligopoly game outcomes will be.

The oligopoly game with the linear demand function for a product and linear cost functions
of players is the most typical case considered by researchers [3–17], since this model is the most
convenient tool for studying game strategies. In particular, dynamic oligopoly games based on
finite-difference equations of players’ responses [3–6] and dynamic games with differential equa-
tions describing the change process of the utility functions of players [7–9] were studied in such
a formulation. A dynamic game based on fractal differential equations of changes in the players’
actions was investigated as well [10]. Also, static oligopoly games were introduced and Cournot
and Stackelberg equilibria were compared accordingly [11].
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Applied aspects of the oligopoly game with linear demand and cost functions were considered
in the context of choosing a firm’s tax policy [12], assessing the consequences of merging firms [13],
entering a bilateral oligopoly game by a new firm [14], selling product sets [15, 16], and adopting
new technology [17].

The above studies involved a non-hierarchical game-theoretic model of oligopoly with initially
equal players, even in the case of Stackelberg leadership: being not conditioned by an original
hierarchy of players, leadership arises from their asymmetric awareness in game dynamics. The
awareness levels were formalized using reflexion ranks r, and reflexion was understood as the process
of making conjectures by a player regarding the strategies of other players (the environment) [18].
As a result of this process, each player creates a set of phantom environment players in the mind,
which can be followers at reflexion rank 1, first-level Stackelberg leaders at reflexion rank 2, and
(r − 1)th-level Stackelberg leaders at reflexion rank r. In other words, at each reflexion rank,
the player thinks that the environment consists of players of a lower reflexion rank. Relating
these theoretical considerations to business practice, we emphasize that the decision-maker (DM)
representing a firm may have no idea of Stackelberg leadership as a scientific category. Nevertheless,
when choosing an appropriate action in the market, the DM must analyze the possible responses
of the counterparties (i.e., must perform reflexion). Therefore, if a player correctly predicts the
environment’s beliefs (i.e., the phantoms coincide with the real players), he/she will dominate in
equilibrium in accordance with the leadership level [19]. But in a non-hierarchical model of the
game, the leader does not actually control the environment players.

However, in reality, it is easy to imagine a game situation where a certain group of players can
choose a common strategy aimed at increasing their payoffs at the expense of one player. Therefore,
a topical issue is to study the following hierarchical system of oligopoly players: a group of players
(the Principal) controls the strategy of a certain player by choosing a group strategy, inducing this
player to choose an optimal strategy in terms of the group’s utility functions. In this case, the
control process is also based on the above reflexive behavior of players. Below, this problem is
investigated for the three-player game model with linear demand and cost functions, which makes
the analysis of equilibria explicit.

2. THE NON-HIERARCHICAL GAME WITH LINEAR DEMAND
AND COST FUNCTIONS (THE LINEAR MODEL)

The non-hierarchical model of an oligopoly market describes the behavior of n players (firms)
supplying an identical product to the market. The consumer demand for this product is charac-
terized by an inverse demand function P (Q), decreasing with the total sales quantity Q(P ′

Q < 0).
The players are equal and choose actions (strategies) in the form of their supply quantities Qi, in
accordance with their increasing cost functions Ci(Qi) (C

′
Qi > 0), with the goal of maximizing the

utility function πi(Q,Qi) = P (Q)Qi − Ci(Qi).

Consider the oligopoly game in the case of the linear demand and cost functions of players:

P (Q) = a− bQ, A > 0, b > 0, a 	 b,

Ci(Qi) = B0i +BiQi, B0i � 0, Bi > 0,

where Qi denotes the action of player i; a, b,B0i, and Bi are constant coefficients expressing the
parameters of the demand function (the maximum price a and the price decline rate b) and the
parameters of the cost function (the fixed costs B0i and the marginal costs Bi). The total action
of the players is Q =

∑
i∈N Qi.

In this case, the players seek to maximize their utility functions πi as follows:

max
Qi�0

πi(Q,Qi) = max
Qi�0

[(a− bQ)Qi −B0i −BiQi], i ∈ N = {1, . . . , n}, (1)

where N stands for the set of players and n is the number of players.
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The Nash equilibrium Q∗
i in the non-hierarchical game Γ = 〈N, {Qi, i ∈ N}, {πi, i ∈ N}〉 is cal-

culated based on the necessary optimality conditions
∂πi(Q

∗
i ,ρij)

∂Qi
= 0, i, j ∈ N , which involve the

conjectural variation of player i. For the system of the objective functions (1), the necessary
optimality conditions have the form

a− bQ− b(1 + Sr
i )Qi −Bi = 0, i ∈ N, Sr

i =
∑

j∈N\i
ρrij, (2)

where Sr
i is the sum of conjectural variations of player i at reflexion rank r. Due to equations (2), the

sum of conjectural variations (SCV) of each player is crucial for calculating the game equilibrium:
the other parameters in (2) can be considered common knowledge, and the player’s SCV value may
be unknown to the environment.

With the player’s type parameter denoted by αi =
a−Bi

b , system (2) can be conveniently written
as

αi − (2 + Sr
i )Qi −Qj

∑ = 0, i ∈ N, (2a)

where Qj
∑ is the total action of the environment of player i; the environment is designated as the

generalized player j.

A comparative analysis of (1) and (2a) allows deriving the maximum profit of player i depending
on the latter’s equilibrium action, i.e., the function π∗

i = πi(Q
∗
i ), in the case of reflexive behavior

of players.

Proposition 1. Under the reflexive behavior of all players, the dependence of the maximum of
the player’s utility function on his/her equilibrium action has the form

π∗
i = b(1 + Sr

i )(Q
∗
i )

2 −B0i. (3)

Proof. From (1) it follows that

πi =
(
a− b

(
Qi +Qj

∑))−BiQi −B0i = b
(
αi −

(
Qi +Qj

∑))Qi −B0i;

on the other hand, by formula (2a),

αi −Q∗
i −Q∗

j
∑ = (1 + Sr

i )Q
∗
i .

Substituting this result into the former expression finally gives (3).

According to equations (2), the solution of this system (the vector of equilibrium actions Q∗ =
{Q∗

i , i ∈ N}) depends on the SCV vector S = {Si, i ∈ N}. Therefore, if the SCV value of some
player i is such that the utility functions of the other players (the environment) are maximized
in equilibrium, then we can say that the environment purposefully controls this player (i.e., a
hierarchical game arises).

3. THE HIERARCHICAL GAME IN THE LINEAR TRIOPOLY MODEL

Consider an oligopoly game with three players (i.e., the triopoly case). In this model, one player i
opposes all other players (the environment), which have a common goal of reaching a beneficial
action of the former player from their standpoint. Therefore, player i will be called the controlled
player. Let the number j be associated with all environment players taken together.

We describe the awareness system in the hierarchical game with the reflexive behavior of players
by the following assumptions.

1) All players are completely aware of each other’s utility functions and actions and choose their
actions simultaneously; the controlled player and the environment are independent of each other.
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2) Environment players j are informed about each other’s conjectural variations and are not
informed about the SCV values of the controlled player; they choose the same strategies (actions
denoted by q) and have the same SCV value (denoted by s). In addition, suppose that the envi-
ronment players are identical in the type parameter αj , j ∈ N\i, with α being the average value of
this parameter. Accordingly, the values of the environment’s objective functions will be the same,
denoted by π. The environment players can change the SCV value in a coordinated manner de-
pending on the SCV value of the controlled player. Moreover, this dependence is inverse: increasing
the SCV value of the controlled player (lowering his/her leadership level) reduces the SCV value
of the environment (i.e., raises its leadership level). We formalize this assumption as follows:

q = Qj , α =
1

n− 1

∑
j∈N\i

αj, π = πj,

s = Sj, s′ =
∂Sj

∂Si
< 0, s′ = const ∀j ∈ N\i.

(4)

3) At each time instant (step) of the game, the controlled player i chooses an action independently
of the environment’s actions by considering the latter’s previous actions. The controlled player is
unaware of the SCV values of the environment but can indirectly estimate them by restoring the
optimal reactions (best responses) from the observed actions of the environment and his/her actions.
The controlled player determines the SCV value as a Stackelberg leader (i.e., by differentiating the
optimal reaction function of the environment).

4) Both counterparties (the controlled player and the environment) are unaware of each other’s
true leadership levels: they do not know the opponent’s SCV value in the game.

The last assumption is crucial for organizing an informational control process by manipulating
the controlled player’s actions. With a goal-oriented action, the environment can create a controlled
player’s belief that the former’s SCV value has changed appreciably, although the true action may
be unit, leaving the environment’s reaction curve and SCV value actually unchanged.

Based on these assumptions, we formulate a hierarchical model of the game: if the controlled
player chooses an optimal action considering the available data on the environment’s SCV values,
then the environment maximizes its utility functions, inducing the controlled player to choose the
best SCV value from the former’s standpoint. In other words, the environment solves the following
problem:

max
Si

π∗(q(s, Si), Qi(s, Si)), s = s0 = const, (5)

provided that the controlled player chooses the strategy from the condition

max
Qi

πi(Q(s, Si), q(s, Si)), (6)

where s0 is the environment’s SCV value at the initial step of the game.

Consider the environment’s control process for the behavior of player i. For this purpose, we
determine the optimal SCV value Si of this player in terms of the environment’s utility function (5):
Si = argmax

Si

π(q(s, Si), Qi(s, Si)).

Proposition 2. The controlled player’s SCV value maximizing the utility function (5) of the
environment is calculated by solving the equation

2(1 + s)q∗
′

Si
+ q∗s′ = 0 (7)
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under the condition

s′ < −(1 + s)q∗

2q∗′Si

. (7a)

Proof. By the first-order optimality condition applied to the environment’s objective func-
tion π∗ (3), we have

π∗′
Si

= 2b(1 + s)q∗
′

siq
∗ + b(q∗)2s′ = 0,

which immediately gives (7). Let a change in the SCV value weakly impact the shift of the
equilibrium q∗′′SiSi

. In view of s′′ = 0 (see (4)), we transform the second-order optimality condition

π∗′′
SiSi

= b{2s′q∗′siq
∗ + 2(1 + s)(q∗

′′
SiSi

q∗ + q∗2) + 2q∗
′

Si
q∗s′ + q∗2s′′} < 0 (7b)

to

2s′q∗
′

si + (1 + s)q∗ < 0. (7c)

The analysis of the Stackelberg leadership levels dynamics shows that q∗′si > 0; in addition,
1 + s > 0 in the linear oligopoly model. Therefore, according to (7b), the maximum is achieved at
s′ < 0 (see Assumption (4)), particularly under condition (7a).

Note that equation (7) corresponds to the previously known formula [20] 2(1 + Sr
i )Q

∗
jQ

∗′
jSi

P ′
Q+(

(1 + Sr
i )P

′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j = 0 for the general oligopoly problem, since P ′
Q = −b and P

′′
QSi

= 0

in the model with linear demand and cost functions under consideration.

4. OPTIMAL CONTROL METHODS

Equation (7) has been written for each environment player. The desired value Si in (7) figures in
the expressions for q∗′si , q

∗, which are necessary to calculate this unknown. Therefore, we consider a
special case of a triopoly, where, without loss of generality, the second player will be the controlled
one (i = 2) whereas the first and third players the environment (j = 1, 3).

Let us find the equilibrium in this game and the solution of the control problem in the hierarchical
system (5).

Proposition 3. In the triopoly game with players j = 1, 3 as the environment and player i = 2
as the controlled one, we have:

i) The optimal reaction functions of the controlled player and the environment are given by

q =
α−Q2

3 + s
, Q2 =

α2 − 2q

2 + S2
. (8a)

ii) The equilibrium actions have the form

q∗ =
α2 − α(2 + S2)

2− (2 + S2)(3 + s)
, Q∗

2 =
2α− α2(3 + s)

2− (2 + S2)(3 + s)
. (8b)

iii) The controlled player’s SCV value maximizing the utility function of the environment is
calculated by solving the equation

2(1 + s)
zq∗ − α

y
+ q∗s′ = 0 (8c)

under the condition

π∗′′
SiSi

b
=

4q∗

y
s′
(
zq∗

2
+ (1 + s)q∗ − α

)
+ 2(1 + s)q∗2 < 0, (8d)

where y = 2− (2 + S2)(3 + s) and z = s′(2 + S2) + 3 + s.
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Proof. In the case under consideration, system (2a) becomes⎧⎪⎪⎨⎪⎪⎩
α1 − (2 + S1)Q1 −Q3 −Q2 = 0

α2 − (2 + S2)Q2 −Q1 −Q3 = 0

α3 − (2 + S3)Q3 −Q1 −Q2 = 0,

⇒
{
2α − 2(2 + s)q − 2Q2 − 2q = 0

α2 − (2 + S2)Q2 − 2q = 0.

Consequently, the optimal reaction functions of the second player and the environment take the
form (8a). Resolving them yields the equilibrium actions (8b). For the sake of simplification, let
us introduce y = 2− (2 + S2)(3 + s) and z = s′(2 + S2) + 3 + s. In this case, the derivative q∗′S2

is
calculated as

q∗
′

S2
=

α2z − α[y + z(2 + S2)]

y2
=

z[α2 − α(2 + S2)]

y2
− αy

y2
=

zq∗ − α

y
.

Therefore, equation (7) turns into (8c).

Now we derive the second-order optimality condition (7a) for the environment’s objective func-
tion. In view of s′′ = 0, the value q∗′′S2S2

can be expressed in the form

q∗
′′

S2S2
=

(z′q∗ + zq∗′S2
)y − y′(zq∗ − α)

y2
=

z′q∗ + 2zq∗′S2

y

(more precisely than (7a)).

Substituting this expression into (7b), after appropriate transformations with z′ = 2s′, we obtain

π∗′′
SiSi

b
= q∗

(
4s′

zq∗ − α

y
+ 2(1 + s)

2s′q∗ + 2zq∗′S2

y

)
+ 2(1 + s)q∗2

=
4q∗

y

(
z[s′q∗ + (1 + s)q∗

′
S2
] + s′[(1 + s)q∗ − α]

)
+ 2(1 + s)q∗2.

According to (7), the change (1 + s)q∗′S2
= − s′q∗

2 in the last equality finally leads to the sufficient
maximum condition (8d).

Proposition 3 can be used to find S2.

Now we develop an algorithm for reaching the target value S2 from the environment’s stand-
point. Let an equilibrium (q0, Q0

2) be established at some initial step 0 of the game under some
SCV values S0

2 (the controlled player) and s0 (the environment), which are unknown to the coun-
terparties. Let us determine the environment’s phantom reaction under which the controlled player
will choose the SCV value S2. We denote by sf the SCV value that the environment must have
for the controlled player to determine his/her SCV value as S2. It will be called the phantom SCV
value of the environment.

Proposition 4. In the triopoly game, the controlled player i = 2 establishes the response according
to S2 under the phantom SCV of the environment (j = 1, 3) if and only if

sf = − 1

S2
− 3. (9)

Proof. If the controlled player performs the action Q2 and the environment responds with the
action q, the former will calculate the SCV value by differentiating the environment’s reaction
function. The environment’s phantom reaction qf (Q2) is calculated by substituting the unknown

value sf into (8a): qf = α−Q2

3+sf
. Then S2 = q′Q2

=
(
α−Q2

3+sf

)′
Q2

= − 1
3+sf

. Therefore, if the environ-

ment’s goal is to induce the controlled player’s choice S2, then from S2 = − 1
3+sf

we obtain the

environment’s SCV value (9) required.
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Based on Proposition 4, we organize the following iterative control process with time instants
(steps) 0, t, t + 1, t+ 2, . . . , indicated by the superscripts of the players’ actions (t > 0).

1. At step t, the environment performs an action calculated according to its phantom reaction
function:

qt =
α−Q0

2

3 + sf
= −S2(α−Q0

2).

2. At step t + 1, the controlled player calculates the SCV value (9) given this action, which is
equal to S2, and then responds according to the new reaction function Qt+1

2 = α2−2q

2+S2
:

Qt+1
2 =

α2 − 2qt

2 + S2
.

3. At step t+ 2, the environment performs an action according to its true reaction function:

qt+2 =
α2 −Qt+1

2

3 + s0
.

4. At step t + 3, the controlled player calculates the SCV value (9) given this action, which is
equal to S0

2 , and then returns to the original reaction function Qt+3
2 = α2−2q

2+S0
2
.

5. At steps t + 4, t + 5, . . . , the environment and the controlled player repeat Stages 3 and 4,
and the game equilibrium returns to the initial state (q0, Q0

2).

At steps t+ 1 and t+ 2 of this process, the environment achieves the desired result and receives
the maximum profit. As is known [3–6], the above iterative process converges to the equilibrium (8b)
fast enough; therefore, suppose that the game state has already stabilized starting from step t+ 3.
Consequently, the environment receives an additional payoff at steps t+ 1 and t+ 2 but may
incur losses at step t. The payoffs at different steps must be brought to a comparable level based
on discounting πd(t) = πte−ρt, commonly used in dynamic oligopoly models [9]. To assess the
effectiveness of the iterative control process, we compare the maximum values of the environment’s
utility function at steps 0, t, t+ 1, and t+ 2 : control is effective if

π∗te−ρt + π∗t+1e−ρ(t+1) + π∗t+2e−ρ(t+2) � π∗0(e−ρt + e−ρ(t+1) + e−ρ(t+2)),

where ρ denotes a discounting factor.

5. EXPERIMENTAL ANALYSIS OF OPTIMAL CONTROL

Consider a numerical experiment for the optimal control process. Computer simulations were
carried out on the 2016–2021 demand and operator cost data for the Russian telecommunications
market [22]. The linear demand function for the voice traffic of mobile operators was constructed
in the form

P (Q) = a− bQ, a = 1.6, b = 0.000001;

the cost functions of mobile operators were taken without fixed costs due to the latter’s negligible
impact on the equilibrium:

Ci(Qi) = BiQi, B1 = 0.0005, B2 = 0.0018, B3 = 0.0004,

where i = 1 corresponds to MTS, i = 2 to MegaFon, and i = 3 to VimpelCom.

As in Section 4, the second player is the controlled one, with the action denoted by Q2, and
the first and third players represent the environment (j = 1, 3), with the same actions denoted
by q. Figure 1 shows the optimal reaction lines of the players (indicated by R) in the cases of
Cournot equilibrium (the SCV values are s = S2 = 0) and three-party Stackelberg leadership (the
SCV values are s = S2 = −0.5); the latter case is treated as the initial state of the game (point 0).
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Fig. 1. Cournot equilibrium (C) and three-party Stackelberg leadership (0).

Fig. 2. The environment’s utility functions depending on the controlled player’s SCV value for different s′.

Table 1 and Fig. 2 show the impact of changes in the environment’s response on the correspond-
ing changes in the controlled player’s response, expressed by s′. The following model dependence
was used:

s = −1 + s′S2,

in which s ∈ (−1, 0] for S2 ∈ (−1, 0] and s′ ∈ (−1, 0]. According to the data in Table 1, reducing
the rate of change of the environment’s SCV value (the absolute value of s′) shifts the target SCV
value S2 of the controlled player closer to zero and increases the maximum utility π∗ of the environ-
ment. The graphs in Fig. 2 demonstrate the existence of a maximum of the environment’s utility
function for certain SCV values of the controlled player. Note that the second-order optimality
condition (8d) was also verified.
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Fig. 3. The informational control process from Stackelberg leadership (0).

Figure 3 demonstrates the informational control process from the state of three-party Stackelberg
leadership (point 0) for the case s′ = −1. At step 1, the environment’s action according to its
phantom reaction function R13(phantom) transfers the game to the state Et; and the controlled
player performs an action corresponding to the initial position 0 in the game. This change in the
environment’s action allows the controlled player to establish that the former’s behavior corresponds
to the SCV value S2; therefore, at step 2, this player changes his/her reaction function to the one
desired for the environment, R2(target). Then the game evolves to the state E(t+1), and the
environment’s action remains at the level Et. Responding at step 3, the environment returns to
its true reaction function R13(s = −0.5), since the environment calculated its optimal target SCV
value of the controlled player precisely for its initial SCV value. As a result, the game passes into
the state E(t+2). The further process of restoring the initial equilibrium at point 0 is not shown
here: at step t+ 2, the players’ actions are already close to this point.

The economic effect of informational control is presented in Table 2 at a discount rate of 10%.
The total discounted utility of the environment for three steps of the control process exceeds the
total discounted value of its utility in the initial state of the game, which confirms the validity of

Table 1. The impact of changes in the environment’s SCV value on the
environment’s optimum when changing the controlled player’s SCV value

Case s′ S2 q∗ π∗

1 −1 −0.2338 5 079 027 128 969
2 −0.75 −0.1478 518 714 134 506
3 −0.5 −0.002 533 454 142 260

Table 2. The economic effect of informational control, ρ = 0.1

Nominal values Discounted values

Step e−ρt π∗0 π∗t π∗0 π∗t

t 0.905 104 761 163 474 94 821 147 963
t+ 1 0.819 104 761 129 758 85 823 106 301
t+ 2 0.741 104 761 85 005 77 680 63 031
Sum 258324 317 295
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such control from the environment’s standpoint. Note an increased utility of the environment at
step t, which is not always the case; in the situation under consideration, the first action of the
environment was less than in the initial equilibrium, resulting in an equilibrium price increase; if
the first action of the environment were the opposite, its utility would decrease.

6. CONCLUSIONS

This paper has demonstrated the fundamental possibility of implementing informational control
of player’s actions in a triopoly game by other players (the environment). The linear models of
demand and cost functions have been considered; in this case, explicit expressions for the optimal
reactions and equilibrium actions of players have been derived, an informational control algorithm
has been developed, and the effect of informational control has been illustrated. The following key
results have been obtained.

The dependence of the maximum of the player’s utility function on his/her equilibrium action
under the reflexive behavior of all players has been established, showing that the player’s payoff
depends both on his/her SCV value and the SCV value of the environment through the former’s
equilibrium action. Hence, by varying the SCV value of the environment, this player can increase
his/her maximum payoff, which is the basis to control the environment through its SCV value as
the control parameter. However, one player cannot manipulate the other players, while a group of
players, acting in concert, can change the beliefs of one player.

Therefore, a hierarchical game has been investigated in which the environment controls a certain
player by finding the optimal SCV value for him/her. An equation has been obtained for calculating
the optimal SCV value of this player in terms of the environment’s utility function. To motivate
the controlled player to choose the required SCV value, the method of optimal reactions has been
used, with explicit formulas derived in the triopoly case. In the three-player game (one controlled
player and two opponents with a common goal), equilibrium actions have been determined, and an
equation has been compiled for calculating the optimal SCV value of the controlled player.

In the triopoly model under consideration, a phantom reaction-based method has been developed
to determine the environment’s action inducing the controlled player to use the optimal SCV value
from the environment’s standpoint. This method has been developed into an algorithm to model the
action sequence of the environment and the controlled player in the informational control process;
the effectiveness of this process has been assessed.

Computer simulations have been carried out to demonstrate the effectiveness and economic
impact of the control algorithm. Although the controlled player receives higher profit only at two
steps of the game, this outcome is quite significant from a practical point of view. In real business,
the game moment often corresponds to the publication period of the company’s financial statements
(annually). Therefore, one or two years in which environment players receive predominant payoffs
can lead to large financial losses for the controlled player and even force the latter out from the
market. Consequently, the results of this study have practical value.
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